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Abstract We have analyzed the basis function series in

molecular systems by optimization of orbital exponents in

Gaussian-type functions (GTFs) including the electron

correlation effects with multiconfiguration self-consistent

field (MCSCF) and Møller–Plesset second-order perturba-

tion (MP2) methods. First, we have derived and imple-

mented the gradient formulas of MCSCF and MP2 energies

with respect to GTF exponent, as well as GTF center and

nuclear geometry, based on the fully variational molecular

orbital (FVMO) method. Second, we have applied these

electron-correlated FVMO methods to H2, LiH, and

hydrocarbon (CH4, C2H6, C2H4, and C2H2) molecules. We

have clearly demonstrated that the optimized exponent

values with electron-correlated methods are different from

those with simple Hartree–Fock method, since adequate

basis functions for adequate virtual orbitals are indispens-

able to describe the accurate wave function and geometry

for electron-correlated calculations.

Keywords Gaussian-type function � Orbital exponent

in GTF � Fully variational molecular orbital (FVMO) �
Electron correlation effect

1 Introduction

According to the rapid developments of theoretical meth-

odology and high-performance computers, ab initio

molecular orbital (MO) calculations of molecular system

composed of thousands of atoms become possible [1–6].

Nowadays, ab initio MO calculations are used as a kind of

experimental equipments, as well as the conventional

experimental techniques, to obtain various properties for

huge molecules. For example, the elongation method [1, 2]

and fragment molecular orbital (FMO) method [3] have

theoretically made it possible to calculate the structure and

properties of large molecules, such as DNA and proteins.

For more improvement of the estimation of various physical

properties, the adequate basis functions with high accuracy

for larger or fragment molecules would be expected.

As well known, although the Hartree–Fock (HF) method

[7] yields about more than 99% of total electronic energies

in ab initio MO methods, it often fails to obtain sufficient

accuracy, and thus, the electron correlation methods [8–12]

are indispensable for the accurate evaluation of some

physical properties. The linear combination of atomic

orbital (LCAO) expansion is widely used in MO calcula-

tion, and the Gaussian-type functions (GTFs) are often

used in these basis or AO sets due to the convenience of the

analytical integral calculations. According to the concept

of LCAO approximation, many basis functions, such as the

correlation consistent [13, 14] and polarization consistent

[15, 16] basis sets, have been already proposed. We note

here that in the conventional MO calculations such GTF

exponents were already determined to obtain the best for

the electronic ground state of each atom or small molecule

and they are generally fixed during the variational proce-

dure, in which only LCAO coefficients are optimized.

Such conventional basis functions are, however, not always
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sufficient, and sometimes there are questions as to whether

they are appropriate for the molecular calculations

including electron correlation effect.

To answer these questions, we have already proposed

the fully variational MO (FVMO) method [17], which is

based on the optimization of all parameters under the

variational principle. According to the FVMO scheme, all

the variational parameters, such as the GTF exponents

and centers, are simultaneously optimized as well as the

nuclear geometries and LCAO coefficients. In addition, we

have extended the energy gradient of FVMO method to the

full-configuration interaction (CI) wave function [18] and

applied to the calculation of low-lying singlet and triplet

excited states of hydrogen molecule. We have found that

the conventional basis functions are not so bad for the

ground state of hydrogen molecule in HF level of calcu-

lation, while they cannot even qualitatively describe the

excited states where the adequate basis functions for virtual

orbitals are required. For example, the appropriate basis

functions for p orbitals were essential for the full-CI cal-

culation of each ground and excited state. However, it is

not possible to employ such full-CI calculation even for

medium-sized molecules, and other electron-correlated

FVMO methods are needed for the applicable calculation.

In this article, thus, we would focus on other electron

correlation methods, such as Møller–Plesset second-order

perturbation (MP2) [8] and complete active space self-

consistent field (CASSCF) [9] of multiconfiguration self-

consistent field (MCSCF) methods. In the next section, we

have derived the gradient formulas of the MP2 and

MCSCF energies with respect to nuclear geometry, GTF

center and exponent, based on the FVMO scheme. In Sect.

3, as test examples, we have applied our MP2 and MCSCF

levels of the FVMO method to the H2, LiH, and hydro-

carbon (CH4, C2H6, C2H4, and C2H2) molecules and opti-

mized the orbital exponent values in GTFs, which are

compared with the results under the HF to clarify the

characteristic feature of electron correlation effect. Finally,

some concluding remarks are shown in Sect. 4.

2 Theory

The lth Cartesian GTF (CGTF) is represented as follows:

vðal;RlÞ ¼ NðalÞðx� XlÞllðy� YlÞmlðz
� ZlÞnl exp �alðr� RlÞ2

n o
; ð1Þ

where N(al) is a normalization factor. The notations of (al)

and Rl ¼ fXl; Yl; Zlg are GTF exponent and coordinate of

CGTF center, respectively. Hereafter, we denote all

parameters of (al) and Rl are denoted as X. We note here

that the quantum-mechanically virial [19] and Hellmann–

Feynman [20] theorems are completely satisfied when one

employs the optimization of the GTF exponents and centers,

respectively.

The total electronic energy and energy gradient with

respect to X under HF level of calculation are expressed as

follows:

Eelec
HF ¼ 2

XIMO

i

fihii þ
XIMO

ij

aijðiijjjÞ þ bijðijjjiÞ
� �

; ð2Þ

oEelec
HF

oX
¼ 2

XIMO

i

fih
X
ii þ

XIMO

ij

aijðiijjjÞX þ bijðijjjiÞX
n o

� 2
XIMO

ij

SX
ij eij; ð3Þ

where fi is the occupation number of the ith molecular

orbital. The coefficients aij and bij are the coupling constants

of Coulomb ðiijjjÞ and exchange ðijjjiÞ molecular integrals,

respectively, and eij is the Lagrangian matrix. The notations

of SX
ij , hX

ij , and ðijjklÞX are so-called skeleton derivatives of

the overlap, one-electron, and two-electron molecular

integrals, defined as follows:

SX
ij ¼

XIAO

lm

Ci
lC j

m
oSlm

oX
; ð4Þ

hX
ij ¼

XIAO

lm

Ci
lC j

m
ohlm

oX
; ð5Þ

ðijjklÞX ¼
XIAO

lmqr

Ci
lC j

mCk
qCl

r
oðlmjqrÞ

oX
; ð6Þ

where Ci
l is the LCAO coefficient, IMO and IAO are the

numbers of molecular and atomic orbitals, respectively.

The MCSCF energy in molecular orbital basis can be

written down as

Eelec
MCSCF ¼

XNconf

IJ

CICJHIJ ¼
XIMO

ij

cijhij þ
XIMO

ijkl

CijklðijjklÞ; ð7Þ

and the corresponding energy gradient of Eelec
MCSCF with

respect to X in atomic orbital basis is expressed as follows:

oEelec
MCSCF

oX
¼
XIAO

lm

clm
ohlm

oX
þ
XIAO

lmqr

Clmqr
oðlmjqrÞ

oX

�
XIAO

lm

Wlm
oSlm

oX
;

ð8Þ

where CI is the CI coefficient, cij and Cijkl (clm and Clmqr)

are the one- and two-electron reduced density matrices in

molecular orbital (atomic orbital) basis, and Wlm is the

energy weighted density matrix in atomic orbital basis [21].
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The MP2 energy, for a closed shell system, can be

written in terms of sums over spatial orbital as

Ecorr
MP2 ¼ 2

Xd:o:
ab

Xvirt:

rs

ðarjbsÞ2

ea þ eb � er � es

�
Xd:o:

ab

Xvirt:

rs

ðarjbsÞðasjbrÞ
ea þ eb � er � es

; ð9Þ

where a, b and r, s are occupied and virtual molecular

orbitals, respectively. The energy gradient of Ecorr
MP2 with

respect to X is expressed as follows:

oEcorr
MP2

oX
¼ 2

Xd:o:
ab

Xvirt:

rs

2ðarjbsÞ � ðasjbrÞ
ea þ eb � er � es

oðarjbsÞ
oX

�
Xd:o:

ab

Xvirt:

rs

ðarjbsÞf2ðarjbsÞ � ðasjbrÞg
ðea þ eb � er � esÞ2

oea

oX
þ oeb

oX
� oer

oX
� oes

oX

� �
:

ð10Þ

We note here that the coupled perturbed HF (CPHF)

equation [22] is required for the calculation of oea

oX and
oðarjbsÞ

oX . The MCSCF and MP2 optimization algorithms

based on the FVMO method are shown in Figs. 1 and 2,

respectively. We have utilized the method by McMurchie

and Davidson [23] to evaluate the overlap, one- and two-

electron integrals with CGTF and corresponding gradient

formulas. The energy gradient with respect to GTF

exponents has been evaluated in the scale of their natural

logarithms. The updated Hessian matrix is constructed

from the analytical gradients using the Davidon, Fletcher,

and Powell method [24] to find the stationary point on

energy hypersurface. The convergence of optimization is

judged when the maximum value and the root mean square

of gradients become less than 1 9 10-5 and 5 9 10-6,

respectively.

Our developed FVMO schemes for MCSCF and MP2

have made it possible to perform simultaneous optimiza-

tion not only for nuclear geometry but also for GTF center

and exponent. Meanwhile, in this article, we focused on the

optimization of only GTF exponent and nuclear geometry,

while all CGTF centers were fixed on each nuclear position

through the optimization procedure. We calculated H2,

LiH, and hydrocarbon (CH4, C2H6, C2H4, and C2H2)

molecules, as test examples, to analyze the optimum basis

sets with electron correlation effect under the CASSCF and

MP2 levels of wave functions. At the practical point of

view, we note here that the computational cost for our

scheme is time-consuming especially due to the derivative

of two-electron integrals with respect to GTF exponents.

All calculations are carried out using our own program

package of the MC_MO [25].

3 Results and discussion

3.1 H2 molecule

First, we calculate H2 molecule with HF, MP2, CAS(2,2)

(two electrons in 1rg and 1ru orbitals), CAS(2,6) (two

electrons in 1rg, 1ru, 2rg, 2ru, 1pu, and 1pg orbitals), and

full-CI levels using uncontracted [4s1p] GTFs. Table 1

shows the optimized results of GTF exponents, total

energies, relative energies from HF level, and optimized

internuclear distance by each level of calculation. The

values in parentheses are the ratios of the optimized

exponent values by electron correlation and HF methods

(acorr/aHF). The initial values of the exponents of [4s1p]

GTFs are taken from the values of Huzinaga’s [4s] basis set

[26] scaled by the conventional universal factor 1.2, and

the initial exponent value of p-type GTF as a polarization

function is set to 1.0000. The HF energy with the initial

[4s1p] basis set is -1.131269 au.

First, we have optimized GTF exponents and geometry

under HF level, and the energy is -1.131590 au which

does not change so much compared with the initial set

(-1.131269 au). Actually, the optimized value of the

exponent of p-type GTF, 1.0268, is very close to the con-

ventional initial one, 1.0000. Then, we have optimized

GTF exponents and geometry under electron-correlated

levels. The s-type GTF exponent values ([4s] part of basis

function) optimized with MP2, CASSCF, and full-CI

levels are very similar to those optimized with HF level.

Initial parameters,Ω

AO integrals, μνS , μνh , )|( ρσμν

Calculation of LCAO, CI coefficients and energy 

Density, μνγ , μνρσΓ

Lagrangian μνW

Energy gradients with respect to Ω

∑ ∑∑ Ω∂
∂

−
Ω∂

∂Γ+
Ω∂

∂
=
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W
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Next parameters,Ω
Converged 

Final energy and properties 

Not converged 
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Ω∂
∂ )|( ρσμν

,        ,    

AO integral derivative

Fig. 1 Optimization algorithm for MCSCF method
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Meanwhile, the tendency of the optimized p-type GTF is

drastically different from that of the s-type GTFs, that is,

the optimized exponent value with MP2 is 0.77 times

smaller than that by HF. This result indicates that in the

calculation of MP2 the diffusive character of basis func-

tions is required for the virtual p orbitals. Similar trends are

obtained by the CAS(2,6) and full-CI wave functions,

while the optimized p-type exponent value with CAS(2,2)

where no p orbitals are included in active space is very

similar to that with HF level.

Table 1 clearly shows that the internuclear distances of H2

molecule calculated with the electron correlation methods

(MP2, CAS(2,6), and full-CI) are close to the experimental

value (1.4010 au) [27] within 0.01 au, due to the optimization

of exponent values in GTFs even though the small number of

basis functions. Contrary to them, the internuclear distance

by CAS(2,2) is quite longer than the experimental value, due

to the overestimation of the contribution for the anti-bonding

1ru orbital. The adequate basis functions for adequate

virtual orbitals are indispensable for electron correlation

Initial parameters,Ω

AO integrals, μνS , μνh , )|( ρσμν

Calculation of LCAO coefficients, MO integrals, ijS , 
ijh , )|( klij , and HF and MP2 energies 

AO integral derivatives,
Ω∂

∂ μνS
, 

Ω∂
∂ μνh

, 
Ω∂

∂ )|( ρσμν , and parts of 
Ω∂

∂ )|( bsar

Calculation of, ΩS , Ωh , ΩF , A , ΩB

Calculation of ΩU  (CPHF equation) 

( ) ΩΩΩ =−− ∑ ij
ar

raraijijij BUAU ,0,εε ),( ji ≠ ΩΩ −= iiii SU
2

1

Calculation of,
Ω∂

∂ )|( bsar , 
Ω∂

∂ iε

Energy gradients with respect to Ω

.
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)}|()|(2){|()|()|()|(2
2

.. .

2

.. .corr
MP2 ∑∑∑∑ ⎟

⎠
⎞⎜

⎝
⎛

Ω∂
∂

−
Ω∂

∂−
Ω∂

∂
+

Ω∂
∂

−−+
−−

Ω∂
∂
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od

ab
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Ω∂
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MP2 EEE
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Not converged 

Fig. 2 Optimization algorithm

for MP2 method

Table 1 Optimized GTF exponent values of uncontracted [4s1p] GTF basis set for H in H2 molecule with HF, MP2, CASSCF, and full-CI levels

HF MP2 CAS(2,2) CAS(2,6) Full-CI

s1 15.9835 15.9506 (1.00) 16.1789 (1.01) 17.1863 (1.08) 16.5475 (1.04)

s2 2.4041 2.4588 (1.02) 2.4337 (1.01) 2.6227 (1.00) 2.5391 (1.06)

s3 0.5508 0.5846 (1.06) 0.5645 (1.02) 0.6144 (1.12) 0.6007 (1.09)

s4 0.1506 0.1580 (1.05) 0.1540 (1.02) 0.1624 (1.08) 0.1606 (1.07)

p1 1.0268 0.7866 (0.77) 1.1078 (1.08) 0.6918 (0.67) 0.7157 (0.70)

Energy (au) -1.131590 -1.159433 -1.150372 -1.166212 -1.167562

DE (kcal/mol) 0.00 -17.47 -11.79 -21.73 -22.57

RHH (au) 1.3870 1.3949 1.4271 1.4090 1.4080

Total energies, relative energies from HF approximation (DE), and optimized internuclear distances (RHH) are also shown. Values in parentheses

are ratio of the optimized exponent values by electron correlation method and HF (acorr/aHF)
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calculations to obtain the accurate wave function, the total

energy, and the reproduction of the molecular geometry.

3.2 LiH molecule

The optimized exponent values of [6s3p/3s] GTFs for LiH

molecule are shown in Table 2. The initial values of the

exponents are taken from the primitive values of Pople’s

STO-3G basis set [28]. The optimized exponent values of

GTFs in inner part become greater than those of the initial

sets, due to the nuclear-electron cusp. To clarify the elec-

tron correlation effect for basis sets, we have compared the

results optimized by MP2 and CASSCF methods with

those by HF.

For LiH molecule, we performed the optimization with

MP2, CAS(4,5) (four electrons in 1–3r and 1–2p orbitals),

and CAS(4,9) (four electrons in 1–5r and 1–4p orbitals)

levels of calculation. Table 3 shows the total energies,

relative energies from HF energy, and optimized internu-

clear distances. The total energy obtained by MP2 was

found to be close to that one by CAS(4,9). Figure 3 shows

the values of the ratios acorr/aHF, where the similar trends

are observed among MP2 and CASSCF calculations.

Especially, the optimized exponent values of p-type func-

tions are much greater than those of HF. Strictly speaking,

the inner s-type GTF exponent values on Li (Li1s and Li2s)

by MP2 calculation are a little smaller than those by HF.

Contrary, the outer s-type GTF exponent values on Li by

MP2 calculation are same or a little greater.

We also calculated the dipole moment as an example of

physical properties with the optimized GTF exponent val-

ues. These results are also shown in Table 3. Contrary to

the case of total energy and geometrical parameter, focused

on this article, we cannot obtain the improved results for

the dipole moment. As shown in the previous articles

Table 2 Optimized GTF exponent values of uncontracted [6s3p/3s]

basis set for LiH molecule under HF level

LiH

Li s1 262.7889

s2 39.5467

s3 8.9365

s4 2.4157

s5 0.7075

s6 0.0558

p1 1.3747

p2 0.2474

p3 0.0486

H s1 6.1358

s2 0.9181

s3 0.1904

Table 3 Total energies, relative energies from HF approximation

(DE), optimized internuclear distances (RLiH), and dipole moment for

LiH molecule obtained by HF, MP2, and CASSCF

HF MP2 CAS(4,5) CAS(4,9)

Energy

(au)

-7.979088 -8.022399 -7.998329 -8.024656

DE (kcal/

mol)

0.00 -27.18 -12.07 -28.59

RLiH (au) 3.0276 3.0190 3.0208 3.0697

Dipole

moment

(D)

5.874 5.886 5.544 5.528

Fig. 3 Ratios of the optimized exponent values by electron correla-

tion method (MP2 and CASSCF) and HF (acorr/aHF) for LiH molecule

Table 4 Optimized GTF exponent values of uncontracted [10s4p/4s]

basis set for C/H in CH4, C2H6, C2H4, and C2H2 molecules under HF

level

CH4 C2H6 C2H4 C2H2

C s1 15077.95 14707.70 14651.20 14410.34

s2 2260.332 2204.937 2196.414 2160.353

s3 514.4552 501.8678 499.9172 491.7302

s4 145.6532 142.109 141.5511 139.2520

s5 47.4122 46.2771 46.0885 45.3593

s6 16.9481 16.5612 16.4862 16.2462

s7 6.4566 6.03292 6.2943 6.2246

s8 2.5276 2.4918 2.4744 2.4613

s9 0.5137 0.4926 0.5048 0.5338

s10 0.1966 0.1803 0.1749 0.1655

p1 12.5941 11.8775 10.8688 10.3515

p2 2.7078 2.5438 2.3223 2.2223

p3 0.7157 0.6706 0.6052 0.5978

p4 0.2224 0.2060 0.1623 0.1617

H s1 20.1881 21.0453 21.9643 23.1085

s2 3.0714 3.2018 3.3314 3.5197

s3 0.6608 0.6797 0.6977 0.7614

s4 0.1356 0.1444 0.1962 0.2069
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[29, 30], further development is necessary to improve the

various physical properties.

3.3 Hydrocarbon molecules

Finally, we show the optimized exponent values of [10s4p/

4s] GTFs for CH4, C2H6, C2H4, and C2H2 under the HF

level in Table 4. The optimized exponent values of GTFs

in inner part become greater than those with the initial sets

[31]. To clarify the electron correlation effect for basis sets,

here, we compared the results obtained by MP2 method

with those ones by HF [32].

Table 5 shows the total energies, relative energies from

HF level, and optimized geometrical parameters obtained

by MP2. To see the effect of optimization of GTF exponent

along with the geometry, the results of the conventional

geometry optimization by MP2 with the initial GTF

exponent values (in parentheses), conventional cc-pVDZ,

and cc-pVTZ are also shown in Table 5. These results

clearly show that the total energy is drastically improved

due to the optimization of GTF exponents, and actually our

energy is lower than the conventional MP2/cc-pVDZ and

MP2/cc-pVTZ levels of calculation. The geometrical

parameters, especially C–H bond distances, along with the

optimization of exponent values are actually found to be

0.02–0.03 au close to the corresponding experimental

values [33, 34]. One of the reasons for such improvement

of the total energy and geometry are due to the adequate

description of different sp3-, sp2-, and sp-hybrid characters

of carbon atom.

Table 5 Total energies, relative energies from HF approximation (DE), and optimized geometrical parameters (RCH and RCC) for CH4, C2H6,

C2H4, and C2H2 molecules obtained by HF and MP2

HF MP2 MP2a MP2b Exptl.c

CH4

Energy (au) -40.208939 (-39.726863) -40.421722 (-39.783524) -40.360175 -40.411666

DE (kcal/mol) 0.00 (0.00) -90.48 (-35.56)

RCH (au) 2.0444 (2.0466) 2.0481 (2.0772) 2.0778 2.0512 2.0541

C2H6

Energy (au) -79.251306 (-78.306180) -79.653256 (-78.414269) -79.537475 -79.629908

DE (kcal/mol) 0.00 (0.00) -173.83 (67.83)

RCC (au) 2.8735 (2.9058) 2.8560 (2.9385) 2.8912 2.8800 2.9026

RCH (au) 2.0501 (2.0523) 2.0574 (2.0846) 2.0836 2.0566 2.0617

C2H4

Energy (au) -78.051683 (-77.073955) -78.423394 (-77.196284) -78.315302 -78.389306

DE (kcal/mol) 0.00 (0.00) -167.98 (-76.76)

RCC (au) 2.4833 (2.4680) 2.5090 (2.5413) 2.5427 2.5174 2.5303

RCH (au) 2.0331 (2.0447) 2.0433 (2.0756) 2.0689 2.0418 2.0522

C2H2

Energy (au) -76.838525 (-75.856280) -77.189113 (-76.004660) -77.082680 -77.159196

DE (kcal/mol) 0.00 (0.00) -168.98 (-93.11)

RCC (au) 2.2324 (2.2080) 2.2852 (2.3022) 2.3237 2.2890 2.2733

RCH (au) 1.9928 (2.0133) 2.0070 (2.0421) 2.0326 2.0060 2.0088

Results of the conventional geometry optimization with the initial GTF exponent values are in parentheses
a MP2/cc-pVDZ
b MP2/cc-pVTZ
c Taken from Refs. [33, 34]

Fig. 4 Ratios of the optimized exponent values by electron correla-

tion method (MP2) and HF (acorr/aHF) for hydrocarbon molecules

(CH4, C2H6, C2H4, and C2H2)
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The values of the ratios acorr/aHF are shown in Fig. 4.

The optimized exponent values in s-type GTFs on carbon

atom by MP2 tend to be smaller than those by HF. The

difference of the ratio among each hydrocarbon molecule is

caused by the difference of sp3-, sp2-, and sp-hybrid

characters. Interestingly, the ratios of sp3-hybrid character

in CH4 and C2H6 are greater than those of sp2- and

sp-hybrid characters in C2H4 and C2H2. Contrary, the

optimized exponent values in p-type GTFs on carbon atom

by MP2 tend to be greater than those by HF. The optimi-

zation of GTF exponent values is, thus, effective to

describe adequate basis functions for each atom in

molecular systems.

The optimization of the exponent values of polarization

and diffusive functions for excited states or triplet states

should be quite interesting subjects. In addition, the

applications to chemical reaction including hetero and

heavy atoms are also our next targets by using our FVMO

method. Meanwhile, in this article, we have reported only

singlet ground state molecules with small basis functions,

as the first step of the electron-correlated FVMO method.

Although, at the practical point of view, the actual com-

putational cost for our scheme is quite time-consuming,

especially due to the derivative of two-electron integrals

with respect to GTF exponents, we believe that such

molecular-optimized basis sets under the electron correla-

tion calculations would be necessary for the more accurate

description of geometry parameters, and various physical

and chemical properties. We also believe that such

molecular-optimized basis sets are suitable for the calcu-

lation with elongation [1] or FMO [3] methods. Such

studies are now in progress.

4 Conclusions

To develop suitable basis functions in molecular systems

for electron correlation calculation, we have derived the

energy gradient of MCSCF and MP2 with respect to

nuclear geometry, GTF center and exponent, based on the

FVMO method. Our developed methods are applied to the

H2, LiH, and hydrocarbon (CH4, C2H6, C2H4, and C2H2)

species, as test molecules. In the case of H2 molecule,

optimized exponent values of s- and p- type functions in

GTFs under the MP2 and CASSCF are greater and smaller,

respectively, than those one under the HF. In LiH and

hydrocharbon molecules, we have also demonstrated the

difference of basis function for HF and post-HF (MP2 and

CASSCF) methods, because the optimized exponent values

are drastically changed. Our developed methods are

effective to analyze and determine basis functions for each

atom in molecular systems of the post-HF calculations. The

adequate exponents for excited states or triplet states are

now in progress.
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